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The Dirac equation in five-dimensional Weitzenböck space is dervied. The effect
of spin–spin interaction induced by torsion is revealed by use of the Dirac
equation in the weak-field situation. A comparison is made of the Dirac equation
of Kaluza–Klein theory in three types of spaces. It is concluded that, from the
point of view of simplicity, the Weitzenböck space is the most suitable one for
establishing Kaluza–Klein theory.

1. INTRODUCTION

The Kaluza–Klein (KK) theory (Kaluza, 1921; Klein, 1926; Toms,
1984), which unifies gravity and electromagnetic interaction, has been gener-
alized to non-Riemann space (Macias and Dehnen, 1991; Zhang and Wu,
1996; Wu, 1993; Lee and Wu, 1992). The Dirac equation has been given in
five-dimensional (5D) Riemann space and Riemann–Cartan space (Macias
and Dehnen, 1991; Zhang and Wu, 1996). In this paper, we derive the Dirac
equation in 5D Weitzenböck space. By applying it to the weak-field situation,
we see the nature of the spin–spin interaction induced by torsion in this case.
Then we compare the form and content of the Dirac equation in 5D KK
theory for the three kinds of space, Riemann space (V5), Weitzenböck space
(A5), and Riemann–Cartan space (U5).

We use the following conventions: Objects or quantities with (without)
a carat (∧) refer to higher dimensional space (4D space-time) and objects or
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quantities with a tilde (,) refer to Riemann space; Greek letters m, n, . . .
(Latin letters A, B, . . . ; i, j, . . . ) are used for coordinate basis indices
(horizental lift basis indices; indices for orthonormal parallel vector fields).

2. GEOMETRY OF 5D WEITZENBÖCK SPACE

Riemann–Cartan space has both curvature and torsion. If the torsion
tensor vanishes, we get Riemann space; setting the curvature tensor to vanish
identically, we obtain Weitzenböck space. Because it is curvature-free, the
Weitzenböck space has an absolute parallelism, i.e., in 5D Weitzenböck space
(A5), there exists a set of linearly independent, orthonormal, 5-parallel vector
fields b̂ 5 {b̂k̂

m̂} which satisfy (Lee and Wu, 1992)

b̂î
m̂b̂î

n̂ 5 dm̂
n̂ , b̂î

m̂b ĵ
m̂ 5 d ĵ

î (2.1)

b̂î
m̂ĝm̂n̂ b̂ĵ

n̂ 5 ĥîĵ, b̂î
m̂ĥîĵb ĵ

n̂ 5 ĝm̂n̂ (2.2)

where {b̂k̂
m̂} are the dual vector fields of {b̂k̂

m̂},ĝm̂n̂ denotes the metric of 5D,
space and the Lorentz metric ĥîĵ 5 diag (1 2 2 2 2).

The 5D metric components in coordinate basis are given generally by

ĝm̂n̂ 5 1gmn 2 k2 AmAn 2kAm

2 kAn 21 2, m̂ 5 (m, 5) (2.3)

where gmn is the 4D space-time metric, Am(x) is the gauge potential of the
electromagnetic field, and k is a constant which makes kAm to be
dimensionless.

To simplify the calculation, we adopt the horizental lift basis (HLB) êÂ;
its components are given by

êA 5 (m 2 kAm5)dm
A, ê5 5 5 (2.4)

The commutation coefficients of this basis ĈÊ
ÂB̂ can be defined by

[êÂ, êB̂] 5 ĈÊ
ÂB̂ êÊ (2.5)

A simple calculation gives

[êA , êB] 5 2kFmn5dm
Adn

B, [êA , ê5] 5 0 (2.6)

where Fmn 5 mAn 2 nAm is the strength of the electromagnetic gauge field.
Obviously, the only nonvanishing commutation coefficient is

C5
AB 5 2kFmndm

Adn
B (2.7)

In the HLB, the metric becomes block diagonal,
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ĝÂB̂ 5 1gAB 0
0 212 (2.8)

where gAB 5 gmndm
Adn

B. The parallel vector field b̂î
Â can also be chosen as

block diagonal,

b̂i
Â 5 1bi

Â 0
0 b5

52 (2.9)

i.e.,

b̂i
A 5 bi

A, b̂i
5 5 b̂5

A 5 0, b̂5
5 5 1 (2.10)

and

b̂i
A 5 bi

A, b̂i
5 5 b̂5

A 5 0, b̂5
5 5 1 (2.11)

The 5D affine connection ĜÊ
ÂB̂ can be defined by (Wu, 1993)

¹̂ê5 êÂ 5 ĜÊ
ÂB̂ êÊ (2.12)

Owing to absolute parallelism, the covariant derivative of parallel vector
fields ¹̂b̂ 5 0; then we have

ĜÊ
ÂB̂ 5 b̂î

Ê êB̂b̂î
Â (2.13)

Using (2.10) and (2.11), we can evaluate the affine connection and get the
only nonvanishing component

ĜE
AB 5 GE

AB 5 Gl
mndE

ldm
Adn

B (2.14)

where Gl
mn is the 4D connection in coordinate basis. The torsion tensor in

HLB can be written as

Q̂Ê
ÂB̂ 5 ĜÊ

ÂB̂ 2 ĜÊ
B̂Â 1 CÊ

ÂB̂ (2.15)

It is found by use of (2.14) that

Q̂Ê
AB 5 QE

AB, Q̂5
AB 5 2kFAB (2.16)

In order to compare with the cases of Riemann space and Riemann–Cartan
space, we decompose the affine connection ĜÊ

ÂB̂ into a Riemannian and a
contortion part,

ĜÊ
ÂB̂ 5 ĜÊ

ÂB̂ 1 K̂Ê
ÂB̂ (2.17)

where

Ĝ̃ÊÂB̂ 5 1–2 [êÂ(ĝÊB̂) 1 êB̂ (ĝÊÂ) 2 êÊ(ĝÂB̂) 1 ĈÊB̂Â 1 ĈÂÊB̂ 1 ĈB̂ÊÂ] (2.18)

represents the Riemann connection in the HLB, and
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K̂Ê
ÂB̂ 5 1–2 (Q̂Ê

ÂB̂ 2 Q̂B̂
Ê

Â 2 Q̂Â
Ê

B̂ ) (2.19)

denotes the 5D contortion tensor. We know from (2.16) that

K̂E
AB 5 KE

AB 5 Kl
mndE

ldm
Adn

B, K̂ 5
AB 5 2 1–2 kFAB 5 21–2 kFmndm

Adn
B (2.20)

where K̂ l
mn is the 4D contortion tensor in coordinate basis.

For the same reason as in the Riemannian case, the spin connection ĜÂ

in 5D Weitzenböck space can be expressed as

ĜÂ 5 1–2 b̂î
B̂¹̂Âb̂ĵB̂ŝîĵ (2.21)

where ŝ îĵ 5 1–4 [gî, ĝ ĵ], and̂ gî satisfy {ĝî, ĝ ĵ} 5 2ĥîĵ. Using (2.17), we can
rewrite (2.21) as

ĜÂ 5 Ĝ̃Â 2 1–2 K̂îĵÂŝîĵ (2.22)

where ĜÂ represents the Riemann spin connection in V5. In Weitzenböck
space, the components of a spinor are kept unchanged during parallel transla-
tion; therefore, the spin connection ĜÂ 5 0. This can also be seen from (2.21)
due to ¹̂b̂ 5 0. Then we have

Ĝ̃Â 5 1–2 K̂îĵÂŝîĵ (2.23)

A straightforward calculation gives

Ĝ̃A 5 1–2 Kijmsijdm
A 5 G̃mdm

A, Ĝ̃5 5 21–2 kFijsij (2.24)

where G̃m 5 1–2 Kijmsij is equal to the Riemannian spin connection in 4D space-
time (Hayashi and Shirafuji, 1979), and Fij 5 Fmnbm

i bn
j . Hence, from (2.4),

the Riemannian spin-covariant derivatives ¹̂̃ÂC 5 (êÂ 1 Ĝ̃Â)C can be writ-
ten as

¹̂̃AC 5 dm
A(êm 1 Ĝ̃m)C 5 dm

A(m 2 kAms 1 G̃m)C
(2.25)

¹̂̃5C 5 (ê5 1 Ĝ̃5)C 5 (5 2 1–2 kFmnsmn)C

3. ACTION AND EQUATION OF DIRAC FIELD

The absolute parallelism of the spinor leads the covariant derivatives of
the spinor to coincide with the usual derivatives. So the Dirac Lagrangian
density L̂D in the HLB is given by

L̂D 5 1–2 ib̂k̂
Ã[Cĝk̂êÃC 2 (êÃC)ĝk̂C] 2 mCC (3.1)

It can further be rewriten as

L̂D 5 1–2 ib̂k
m[CgkmC 2 (mC)gkC] 2 mCC

1 1–2 ib̂k
m[kAm(5C)gkC 2 CgkkAm5C]
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1 1–2 ib5
5[Cĝ55C 2 (5C)ĝ5C] (3.2)

Because the fifth coordinate is usually assumed to be periodic, we
choose, as in 5D Riemann space, the Dirac spinor in the form C(xm, x5) 5
L21/2 exp(ix5/r)c(xm) with 0 , x5 # 2pr 5 L to guarantee that the 5D theory
is covariant with respect to U(1) (Macias and Dehnen, 1991). Thus (3.2)
may be expressed in terms of c as

L̂D 5 L21{1–2 ibk
m[cmc 2 (mc)gkc] 2 mcc

2 ibi
mcieAmgkc 2 r 21b5

5cĝ5c} (3.3)

where e 5 k/r is the electronic charge. Rewriting the Dirac Lagrangian
density L̂D by use of the Riemannian covariant derivative ¹̂̃ 5 m 2 ieAm 1
G̃m so as to compare with the cases of Riemann space and Riemann–Cartan
space, we get

L̂D 5 L21{1–2 ibk
m[cgk¹̂̃mc 2 (¹̂̃mc)gkc] 2 3–4 akcg5gkc

2 r 21cĝ5c 2 mcc} (3.4)

where am is the axial vector part of the torsion tensor (Hayashi and Shira-
fuji, 1979),

am 5 bk
mak 5 1–6 emnrsQnrs (3.5)

The 5D Dirac action then is

ÎD 5 # d 5x b̂L̂D (3.6)

where

b̂ 5 det(b̂i
Â ) 5 b 5 det(bi

m) (3.7)

Substituting (3.4) into (3.6), we obtain

ÎD 5 # d 4x bH1
2

ibk
m[cgk¹̂̃mc 2 (¹̂̃mc)gkc] 2

3
4

akcg5gkc

2 mcc 2 r 21cĝ5c} (3.8)

Varying ÎD with respect to c, we get the Dirac equation of Kaluza–Klein
theory in 5D Weitzenböck space:

ibk
mgk¹̂̃mc 2 3–4 akg5gkc 2 r 21ĝ5c 2 mc 5 0 (3.9)

where the term 3–4 akg5gkc, which occurs in the Dirac equation in 4D Weitzen-
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böck space, is the contact interaction term induced by torsion, while r21ĝ5c
represents the additional mass term caused by five-dimensional space.

4. LAGRANGIAN AND FIELD EQUATION OF GRAVITY

The torsion tensor can be decomposed into three irreducible parts under
the group of Lorentz transformation L5 (Lee and Wu, 1992)

t̂l̂m̂n̂ 5
1
2

(Q̂l̂m̂n̂ 1 Q̂m̂l̂n̂) 1
1
8

(ĝn̂l̂ v̂m̂ 1 ĝn̂m̂v̂l̂) 2
1
4

ĝl̂m̂ v̂n̂ (4.1)

v̂m̂ 5 Q̂ l̂
l̂m̂ (4.2)

âr̂ŝ 5
1
3!

el̂n̂m̂r̂ŝ Q̂ l̂m̂n̂ (4.3)

From the three parts, we can construct the gravitational Lagrangian density

L̂G 5
1

16pGL
[â1(t̂ l̂m̂n̂t̂l̂m̂n̂) 1 â2(v̂m̂v̂ m̂) 1 â3(â r̂ŝâr̂ŝ)] (4.4)

which can be further reduced, by use of (2.16), to

L̂G 5
1

16pGL HFâ1(tlmntlmn) 1 11
8

â1 1 â22(vmvm)

2 2â3(arar)G 2 1â1

2
1

â3

9 2k2FmnFmnJ (4.5)

where tlmn, vm, and am are three irreducible parts under the group of Lorentz
transformation L4 (Hayashi and Shirafuji, 1979). The gravitational action is

ÎG 5 # d 5x !ĝL̂G (4.6)

By the choice k2 5 16pG and (Lee and Wu, 1992)
1–2 â1 1 1–9 â3 5 21–4 (4.7)

the 5D action ÎG can be reduced to the 4D action and an electromagnetic part

ÎG 5 # d 4x !2g LG 2
1
4 # d 4x !2g Fmn Fmn (4.8)

where

LG 5
1
2k

[a1(tlmntlmn) 1 a2(vmvm) 1 a3(arar)] (4.9)

k 5 8pG and a1 5 â1, a2 5 1–8 â1 1 â2, a3 5 22â3. The gravitational action
ÎG can be writen in another form (Hayashi and Shirafuji, 1979):
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ÎG 5 # d 4x !2g
1
2k

[R̃ 1 c1(tlmntlmn) 1 c2(vmvm) 1 c3(amam)]

2
1
4 # d 4x !2gFmnFmn (4.10)

where

c1 5 a1 1
2
3

5
c3

9
, c2 5 a2 2

2
3

, c3 5 a3 1
3
2

(4.11)

R̃ 5 gmnR̃l
mln (4.12)

R̃r
smn 5 mG̃r

sn 2 nG̃r
sm 1 G̃r

lmG̃l
sn 2 G̃r

lnG̃l
sm (4.13)

The total action should be

Î 5 ÎG 1 ÎD (4.14)

Varying Î with respect to bk
m, after some algebra, we can split the gravitational

field equation into symmetric and antisymmetric parts:

G̃ij 1
1

!2g
l(!2gF (ij)l) 1 H ij 2

1
2

hijL8 5 kT (ij) (4.15)

2l(!2gF [ij]l) 5 k!2gT [ij] (4.16)

where

G̃ij 5 bi
mbj

n1R̃mn 2
1
2

gmnR̃2 (4.17)

Fijl 5 bi
mb j

mFmnl (4.18)

Fmnl 5
1
9

c3(tmnl 2 tmln) 1 c2(gmnvl 2 gmlvn) 2
1
3

c3emnlrar (4.19)

Hij 5 bi
mb j

nHmn 5 bi
mb j

n1T rsmFrs
n 2

1
2

T nrsFm
rs2 (4.20)

L8 5 c1(tlmntlmn) 1 c2(vmvm) 1 c3(amam) (4.21)

T ij 5 bi
mb j

nTmn 5
1

!2g
hkib j

n

d!2g(LD 2 1–4 FmnFmn)

dbk
n

(4.22)

Here T ij is the total energy-momentum tensor of the Dirac and electromagnetic
fields, and T (ij) and T [ij] are its symmetric and antisymmetric parts,
respectively.
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5. THE WEAK-FIELD APPROXIMATION

In order to reveal the nature of the spin–spin interaction induced by
torsion in 5D Weitzenböck space, we consider the weak-field approximation
(Hayashi and Shirafuji, 1979):

bk
m(x) 5 dk

m 1 d k
m .d k

m(x). ¿ 1 (5.1)

bk
m(x) 5 dk

m 1 ek
m, .ek

m(x). ¿ 1 (5.2)

From (2.1) we get

d n
m 1 em

n 5 0 (5.3)

Thus, {dmn} can be treated as basic field variables, which can be decomposed
into symmetric and antisymmetic parts

dmn 5 1–2 hmn 1 Amn (5.4)

with hmn 5 hnm, Amn 5 2Anm. The components of the metric tensor are then
written as

gmn 5 hmn 1 hmn (5.5)

By such an approximation, the antisymmetric field makes no contribution to
the space-time metric, which implies that it is associated with the intrinsic
spin of spin-1/2 fundamental particles. In weak-field case, the axial vector
part of the torsion is given by

am 5 1–3 emnrs nArs (5.6)

The gravitational field equations (4.15) and (4.16) then become

211
2

1
3
2

c12 r rhmn 1 1c1 2
1
2

c2 1
1
22 l(mhnl 1 nhml)

2 11
2

1
1
2

c1 2 c22hmn r shrs 1 (c1 1 c2)l(mAn 2 nAm) 5 kT(mn) (5.7)

2
5
18

c3
rrAmn 1 11

2
c2 2

2
9

c32l(mAnl 2 nAml)

2
1
4 11

9
c3 1 c22l(mhnl 2 nhml) 5 8pGT[mn] (5.8)

where hmn are defined as

hmn 5 hmn 2 1–2 hmnh, h 5 hmnhmn (5.9)

Multiplying n on both sides of (5.7) and (5.8), we find that, if we choose
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c2 5 2c1 5 21–9 c3 (5.10)

both the symmetric and antisymmetric parts of the angular momenta Tmn

satisfy the conservation law

nT [mn] 5 0, nT (mn) 5 0 (5.11)

Thus we have the relation (Hayashi and Shirafuji, 1979)

2T [mn] 5 rSmnr (5.12)

where Smnr is the spin tensor of matter. For Dirac particles, it has the totally
antisymmetric form

Smnr 5 21–2 emnrscg5gsc (5.13)

It can be checked by use of (5.10) that equations (5.7) and (5.8) are
invariant under gauge transformations

h8mn 5 hmn 2 mJn 2 nJm (5.14)

A8mn 5 Amn 1 mHn 2 nHm (5.15)

where Jm and Hm are arbitrarily small functions which leave the fields weak.
Taking the gauge conditions to be

nAmn 5 0, nhmn 5 0 (5.16)

we find that the field equations (5.7) and (5.8) become

rrhmn 5 xT(mn) (5.17)

rrAmn 5 2lT[mn] (5.18)

with

x 5
12k

3 1 c3
, l 5

18k
5c3

(5.19)

With the help of (5.12) and (5.18), we obtain

rAmn 5 21–2 lSmnr (5.20)

Substituting (5.13) and (5.20) into (5.6) gives

am 5 1–2 lcg5gmc (5.21)

So the Dirac equation (3.9) in the weak-field approximation can be
expressed as
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ibk
mgk¹̂̃mc 2 3–8 lcg5gmcg5gmc 2 r 21ĝ5c 2 mc 5 0 (5.22)

Apart from the additional mass term, the form of the equation is the same
as that of the 4D weak-field case, where c1 5 2c2 also must be set in order
to guarantee that both T(mn) and T[mn] are conserved.

6. SPIN–SPIN INTERACTION

To investigate the spin–spin interaction induced by torsion, as we did
in the 4D case (Wu and Zhang, 1998) and 5D EC theory (Zhang and Wu,
1996), we can ignore the connection (Gm), the electromagnetic potential (Am)
and the additional mass term (r21g5c) temporarily. Then the Dirac equation
(3.9) can be rewritten as

igmmc 2 3–4 amg5gmc 2 mc 5 0 (6.1)

assuming that the torsion axial vector am can be regarded as the background
torsion generated by spin-1/2 particles, which is supposed to be an electron
distribution with number density n and spin in the up (1z) direction. The
background electronic wave function can be taken as u 5 u (0) e2ip0t, u(0) 5
!n(1 0 0 0)T. A test electron put into the background, will suffer an action
from the background torsion. Its wave function can be set to c 5 c(0)e2iEt.
Then the Dirac equation (6.1) becomes

g0mc 1 3–8 l(uĝ5gmu)ĝ5gmc 5 Ec (6.2)

In this case, we can take the constant Dirac matirx

g0 5 1I 0
0 I2, gi 5 1 0 si

2si 0 2, ĝ5 5 2i10 I
I 02 (6.3)

in the evaluation. Then the eigenenergy for the test particle (in cgs unit) is

E 5 mc2 6
3l"2

8c2 n (6.4)

Thus we can conclude that in Weitzenböck space the gravitational spin–spin
interaction is repulsive for Dirac particles with aligned spins and attractive
for opposed spins. If we take the parameter l 5 8pG (c3 5 18/5), then the
interaction in Weitzenböck space is equivalent to that in 4D Riemann–Cartan
space (Hehl et al., 1976). But the spin interaction caused by the fifth dimen-
sion, unlike in 5D Riemann–Cartan space (Zhang and Wu, 1996), does not
exist in 5D Weitzenböck space.
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7. DISCUSSION

In order to see explicitly the differences in the Dirac equation in the
three kinds of spaces, we list the respective Dirac equation as follows:

• 5D Riemann space (V5) (Macias and Dehnen, 1991):

igm¹̂̃mc 1 1–2 i!16pGFmnsmng5c 2 r 21g5c 2 mc 5 0 (7.1)

• 5D Weitzenböck space (A5):

igm¹̂̃mc 2 3–4 amg5gmc 2 r 21g5c 2 mc 5 0 (7.2)

• 5D Riemann–Cartan space (U5) (Zhang and Wu, 1996):

igm¹̂̃mc 1 1–2 i!16pGFmnsmng5c 2 r 21g5c 2 mc

1 3pG(cg5gmc)g5gmc 2 3–2 pG(cg[5mn]c)g[5 mn]c 5 0 (7.3)

where g[5mn] [ g[5gmgn] is antisymmetric with respect to 5, m, n.

• 4D Riemann space (V4):

[igm¹̃m 2 m]c 5 0 (7.4)

• 4D Weitzenböck space (A4):

[igm¹̃m 2 3–4 amg5gm 2 m]c 5 0 (7.5)

• 4D Riemann–Cartan space (U4)

[igm¹̃m 2 3pG(cg5gm)g5gm 2 m]c 5 0 (7.6)

Here ¹̃m 5 m 1 G̃m is the spin-covariant derivative in V4.
It is easy to see that the Dirac equation in A5 has the spin–torsion

coupling term (3–4 amg5gmc) and lacks the spin–electromagnetism coupling
term (1–2 i!16pGFmnsmng5c), while the situation in V5 is just the reverse. In
U5, both terms exist. In spite of such differences, the fact that there exist in
all of three types of Dirac equation the same covariant derivative term ¹̂̃mc 5
(m 2 ieAm 1 G̃m)c, which contains both spin connection (G̃m) and electromag-
netic potential (Am), reflects the unification of electromagnetic and gravita-
tional action in 5D theories of gravity.

The 5D Dirac equations all have an additional term r21g5c, which
represents the additional mass. There are two interpretations of this term.
One of is that (Vladimirov, 1987), making transformation with respect to the
spinor c 5 Sc8 5 exp(ug5) c, one can get the total mass m8 5
!r22 1 m2 by a reasonable choice of u. Although the value r21 5
e/!16pG . 2.67 3 1027 g, is very large, the mass parameter (m) in the



2062 Zhang, Wu, Wang, and Sun

Langrangian can be regarded as imaginary, i.e., m2 , 0. If the value of m2

is chosen to be near r22, the total mass m8 5 !r22 1 m2 may coinside with
the observed value. Another point of view claims (Macias and Dehnen, 1991)
that because of the large value of r21 and the fact that m2 is positive or zero,
the modified mass m8 5 !r22 1 m2 cannot accord with the observed value,
and so Kaluza–Klein theory must be rejected. Later this mass problem was
solved by introducing a scalar field into the metric in Kaluza–Klein theory
(Macias and Dehnen, 1992).

It can be seen from the Dirac equation in the three types of space that
the Dirac equation in A5 has only one extra mass term in contrast to the
corresponding 4D Dirac equation, and no additional terms. If simplicity is
considered a criterion in formulating a physical theory (i.e., if one thinks
that the fewer additional terms that result by generalizing the 4D Dirac
equation to the 5D case, the better) one can conclude that in this sense
Weitzenböck space is the most suitable one for Kaluza–Klein theory.
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